Heterogeneous Asymmetric Hydrogenation of a Chiral Tripeptide containing Dehydroalanine and α,β-Dehydrobutyrine Residues

Michiaki Takasakit and Kaoru Harada"

Department of Chemistry, University of Tsukuba, Niihari, Ibaraki, 305 Japan

The heterogeneous asymmetric hydrogenation of a linear tripeptide containing dehydroalanine and a\$-dehydrobutyrine has been carried out, giving asymmetric yields of alanine and butyrine of 94 and **54%,** respectively.

Several studies on the heterogeneous asymmetric hydrogena- hydrogenation of chiral tripeptides containing dehydroalanine tion of α , β -dehydroamino acid derivatives have been per-
formed.^{1,2} In a previous study, heterogeneous catalytic relatively high asymmetric yields (43—93%).² We now report

relatively high asymmetric yields $(43-93\%)$.² We now report the heterogeneous asymmetric hydrogenation of the linear **7 Deceased.** tripeptide **(11)** containing two dehydroamino acid residues,

 $Boc = t$ -butoxycarbonyl

Scheme 1. *i*, DBU; *ii*, H₂, catalyst; *iii*, H₂O, H⁺.

dehydroalanine and α , β -dehydrobutyrine (α -aminocrotonic acid).

The catalytic hydrogenation reaction actually involves **1,4** and 1,7-asymmetric induction. Compound (II) \ddagger was prepared from the corresponding β -chlorotripeptide (I) by β -elimination using **1,8-diazabicyclo[5.4.O]undec-7-ene** (DBU) (Scheme 1). The ratio of the *(E)-* and (2)-forms of the α , β -dehydrobutyrine residue in compound **(II)** was hydrogenated by using several catalysts, such as Raney-Ni (W-1 type), 5% palladium on charcoal, 5% palladium hydroxide on charcoal, and platinium oxide (Pic_2) , in tetrahydrofuran (THF) as a solvent under a hydrogen atmosphere. The resulting tripeptide (111) was hydrolysed with 6 **M** HC1 for 8 h at $110\degree$ C in a sealed tube under reduced pressure. The chemical yield of alanine and butyrine (α -aminobutyric acid) was in the range 79-97% and 51-98%, respectively, as determined by an amino acid analyser. In order to determine the asymmetric

^{\$} lH N.m.r. (CDCl,): *S* **1.33 (s,** 9H), 1.45 **(s,** 9H), 1.94 (d, **0.5H),** 2.18 **(b, 4H),** 2.41 (d, 2.5H), 3.68 (b, 2H), 4.47 (b, lH), 5.08 **(s,** lH), 5.86 **(s,** lH), 6.46 (b, 0.9H), 7.18 (b, lH), 8.20 (b, lH), 8.92 (b, 1H). All analytical data of compound **(11)** agree with theoretical values. The α , β -dehydrobutyrine residues are present in compound (II) as two geometric isomers, (E) and (Z) , in a ratio of 8:2 (by ¹H n.m.r. spectroscopy).

Table 1. Heterogeneous catalytic hydrogenation of compound **(II).a**

			Alanine			Butyrineb		
Catalyst	Temp. ⁄°С	$\%$ Yield	%	A.Y. ^c Config. ^d	$\%$ Yield	%	A.Y.c Config.d	
Raney-Ni	-30	92	94	(R)	73	54	(S)	
$(W-1$ type)	-10	93	88	(R)	90	54	(S)	
	10	89	86	(R)	87	50	(S)	
	30	83	77	(R)	87	45	$\left(S\right)$	
	50	80	76	(R)	85	41	(S)	
Pd/C	-30	97	91	(R)	84	22	(S)	
(5%)	-10	93	87	(R)	91	36	(S)	
	10	94	72	(R)	89	26	$\left(S\right)$	
	30	79	72	(R)	86	28	(S)	
	30 ^e	82	70	(R)	84	24	(S)	
	50	85	73	(R)	82	24	(S)	
$Pd(OH)_{2}/C - 30$		95	82	(R)	98	25	(S)	
(5%)	-10	97	88	(R)	93	23	(S)	
	10	93	67	(R)	90	25	$\left(S\right)$	
	30	80	65	(R)	68	23	(S)	
	50	88	57	(R)	77	25	(S)	
P ₁ O ₂	-30	91	89	(R)	31	6	(R)	
	-10	93	90	(R)	34	3	$\left(S\right)$	
	10	93	79	(R)	87	16	(S)	
	30	80	56	(R)	93	12	(S)	
	50	86	59	(R)	77	12	(S)	

^aHydrogenation was carried out with 0.1 mmol of compound **(11),** 20 mg of a catalyst in 3 ml of tetrahydrofuran as a solvent under a hydrogen atmosphere. The ratio of the (E) -: (Z) -forms of the α , β -dehydrobutyrine residue in compound (I) was 8:2, except for e. $b \alpha$ -Aminobutyric acid. *c* Asymmetric yield: A.Y. = $\{[(R)-(S)]/[(R)+(S)]\}$ (S) } \times 100. d Configuration of the newly-formed amino acid residue. **e** The ratio of the (E) -: (Z) -forms of the α , β -dehydrobutyrine residue in compound **(11)** was 4 : 6.

yield, the alanine and butyrine in the hydrolysate were converted into the corresponding N -(trifluoroacetyl)amino acid isopropyl esters in the usual manner and then subjected to gas chromatographic analysis employing a chiral stationary phase (Chirasil-Val4). The peaks due to *(R)-* and (S)-alanine and to *(R)-* and (S)-butyrine were in the baseline separation.

The results obtained are summarized in Table 1. The configurations of the resulting alanine and butyrine formed were *(R)* and *(S),* respectively. The asymmetric yields of (R) -alanine increased depending on the decrease of reaction temperature and reached 94% at -30° C. No clear effect of catalyst on the asymmetric yield of (R) -alanine was observed. On the other hand, the asymmetric yield of (S) -butyrine obtained was influenced by the catalyst used. The asymmetric yield of (S)-butyrine obtained reached 54% at -30° C using Raney-Ni. However, when P_1O_2 was used as a catalyst, the asymmetric yield of butyrine was only 5—0%.

The results indicate that Raney-Ni is the most effective catalyst to cause 1,7 and 1,4-asymmetric inductions under the conditions used. The presence of (S)-proline t-butylamide in the substrate could be an important factor leading to effective asymmetric induction by heterogeneous hydrogenation. This may be explained by the adsorption of substrate onto the catalyst; the adsorbed substrate formed by the interaction of carbonyl oxygen and the catalyst would then be hydrogenated to yield (R) -alanine and (S) -butyrine when (S) -proline t-butylamide is used as the chiral moiety. This reaction is the first **J. CHEM. SOC., CHEM. COMMUN., 1987** 573

example to our knowledge of 1,7-asymmetric induction in the heterogeneous catalytic hydrogenation of a linear dehydrotripeptide, which may be applied to the synthesis of chiral amino acids and peptides.

Received, 18th November 1986; Corn. I643

References

1 J. S. Sheehan and R. E. Chandler, *J. Am. Chem. SOC.,* **1961,83, 4795; H.** Matsuo, **H.** Kobayashi, and T. Tatsuno, *Chem. Pharm.*

Bull., **1970,18,1693;** M. Nakayama, **G.** Maeda, T. Kaneko, and H. Katsura, *Bull. Chem. SOC. Jpn.,* **1971,44,1150; N.** Izumiya, **S.** Lee, T. Kanmera, and H. Aoyagi, *J. Am. Chem. SOC.,* **1977,99,8346;** T. Kanmera, **S.** Lee, H. Aoyagi, and N. Izumiya, *Tetrahedron Lett.,* **1979, 4483;** J. **S.** Davies, M. C. Eaton, and M. N. Ibrahim, *J. Heterocycl. Chem.,* **1980, 17, 1813;** K. Harada and M. Takasaki, *Bull. Chem.* **SOC.** *Jpn.,* **1984,57, 1427.**

- **2 M.** Takasaki and K. Harada, *Chem. Lett.,* **1984, 1745.**
- **3 A.** Srinivasan, **R.** W. Stephenson, and R. K. Olsen, *J. Org. Chem.,* **1977,42,2253.**
- **4 H.** Frank, **G.** J. Nicholson, and E. Bayer, *J. Chromatogr. Sci.,* **1977, 15, 174.**